Phương pháp giải: - Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]. - Cho nghiệm tìm được thuộc khoảng \(\left( {\dfrac{\pi }{4};2\pi } \right)\), tìm các giá trị k nguyên thỏa mãn, từ đó suy ra số nghiệm của phương trình thỏa mãn yêu cầu bài toán. Giải chi tiết:Ta có: \(\tan x = \tan \dfrac{{3\pi }}{{11}} \Leftrightarrow x = \dfrac{{3\pi }}{{11}} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\). Theo bài ra ta có: \(\begin{array}{l}x \in \left( {\dfrac{\pi }{4};2\pi } \right)\\ \Rightarrow \dfrac{\pi }{4} < \dfrac{{3\pi }}{{11}} + k\pi < 2\pi \\ \Leftrightarrow - \dfrac{\pi }{{44}} < k\pi < \dfrac{{19\pi }}{{11}}\\ \Leftrightarrow - \dfrac{1}{{44}} < k < \dfrac{{19}}{{11}}\end{array}\) Mà \(k \in \mathbb{Z}\) \( \Rightarrow k \in \left\{ {0;1} \right\}\). Vậy phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu bài toán. Chọn B.