Đáp án:
CHÚC BẠN HỌC TỐT !!!!!!!!!!
Giải thích các bước giải:
$a)$
$2⁶⁶⁵ < 2⁶⁶⁶ = 2^{3.222} = (2³)²²² = 8²²²$
$3⁴⁴⁵ > 3⁴⁴⁴ = 3^{2.222} = (3²)²²² = 8²²²$
Vì $8²²² < 9²²²$
$=> 2⁶⁶⁵ < 8²²² < 9²²² < 3⁴⁴⁵$
$=> 2⁶⁶⁵ < 3⁴⁴⁵$
$b)$
$2¹⁸¹ > 2¹⁸⁰ = 2^{5.36} = (2⁵)³⁶ = 32³⁶$
$5⁷¹ < 5⁷² = 5^{2.36} = (5²)³⁶ = 25³⁶$
Vì $32³⁶ > 25³⁶$
$=> 2¹⁸¹ > 32³⁶ > 25³⁶ > 5⁷¹$
$=> 2¹⁸¹ > 5⁷¹$
$c)$
`(\frac{2}{5})^{2020} > (\frac{2}{5})^{2021}`
`(\frac{2}{5})^{2022} < (\frac{2}{5})^{2021}`
`=> (\frac{2}{5})^{2020} > (\frac{2}{5})^{2021} > (\dfrac{2}{5})^{2022}`
`=> (\frac{2}{5})^{2020} > (\frac{2}{5})^{2022}`
$d)$
`(- 1/3)²⁰²¹ = - \frac{1}{3²⁰²¹} < - \frac{1}{3²⁰²²}`
`(- 1/3)²⁰²³ = - \frac{1}{3²⁰²³} > - \frac{1}{3²⁰²²}`
`=> - \frac{1}{3²⁰²¹} < - \frac{1}{3²⁰²²} < - \frac{1}{3²⁰²³}`
`=> (- 1/3)^{2021} < (- 1/3)^{2023}`