Đáp án đúng: D
Phương pháp giải:
- Xét phương trình hoành độ giao điểm, tìm các nghiệm thuộc \(\left[ {0;2\pi } \right]\).
- Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a\), \(x = b\) khi quanh quay trục hoành là: \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).
Giải chi tiết:Xét phương trình hoành độ giao điểm: \(\sin x = 0 \Leftrightarrow x = k\pi \).
Trên \(\left[ {0;2\pi } \right]\) phương trình trên có 3 nghiệm \(x = 0,\,\,x = \pi ,\,\,x = 2\pi \).
Hình phẳng giới hạn bởi các đường \(y = \sin x;\) \(y = 0;\) \(x = 0;\) \(x = 2\pi \) quay quanh trục \(Ox\) là :
\(\begin{array}{l}V = \pi \int\limits_0^{2\pi } {\left| {{{\sin }^2}x} \right|dx} \\\,\,\,\,\, = \pi \left( {\int\limits_0^\pi {\left| {{{\sin }^2}x} \right|dx} + \int\limits_\pi ^{2\pi } {\left| {{{\sin }^2}x} \right|dx} } \right)\\\,\,\,\,\, = \pi \left( {\left| {\int\limits_0^\pi {{{\sin }^2}xdx} } \right| + \left| {\int\limits_\pi ^{2\pi } {{{\sin }^2}xdx} } \right|} \right)\end{array}\)
Xét nguyên hàm: \(\int {{{\sin }^2}dx} \) ta có:
\(\int {{{\sin }^2}dx} = \dfrac{1}{2}\int {\left( {1 - \cos 2x} \right)dx} \)\( = \dfrac{1}{2}\left( {x - \dfrac{1}{2}\sin 2x} \right) + C\) \( = \dfrac{1}{2}x - \dfrac{1}{4}\sin 2x + C\).
Khi đó ta có:
\(\begin{array}{l}V = \pi \left( {\left| {\left. {\dfrac{1}{2}x - \dfrac{1}{4}\sin 2x} \right|_0^\pi } \right| + \left| {\left. {\dfrac{1}{2}x - \dfrac{1}{4}\sin 2x} \right|_\pi ^{2\pi }} \right|} \right)\\\,\,\,\,\, = \pi \left( {\dfrac{1}{2}\pi + \dfrac{1}{2}.2\pi - \dfrac{1}{2}\pi } \right) = {\pi ^2}\end{array}\)
Chọn D.