Đáp án:
Giải thích các bước giải:
e,
\[\begin{array}{l}
{\left( {\sqrt {15} + 2\sqrt 3 } \right)^2} + 12\sqrt 5 \\
= 15 + 2.\sqrt 3 .\sqrt 5 .2\sqrt 3 + {\left( {2\sqrt 3 } \right)^2} + 12\sqrt 5 \\
= 15 + 12\sqrt 5 + 12 + 12\sqrt 5 \\
= 27 + 24\sqrt 5
\end{array}\]
f,
\[\begin{array}{l}
\left( {\sqrt 6 + 2} \right)\left( {\sqrt 3 - \sqrt 2 } \right)\\
= \sqrt 2 .\sqrt 3 .\sqrt 3 - \sqrt 2 .\sqrt 3 .\sqrt 2 + 2\sqrt 3 - 2\sqrt 2 \\
= 3\sqrt 2 - 2\sqrt 3 + 2\sqrt 3 - 2\sqrt 2 \\
= \sqrt 2
\end{array}\]
g,
\[\begin{array}{l}
{\left( {\sqrt 3 + 1} \right)^2} - 2\sqrt 3 + 4\\
= 3 + 2\sqrt 3 + 1 - 2\sqrt 3 + 4\\
= 8
\end{array}\]
h,
\[\begin{array}{l}
\left( {1 + \sqrt 2 - \sqrt 3 } \right)\left( {1 + \sqrt 2 + \sqrt 3 } \right)\\
= {\left( {1 + \sqrt 2 } \right)^2} - {\left( {\sqrt 3 } \right)^2}\\
= 3 + 2\sqrt 2 - 3\\
= 2\sqrt 2
\end{array}\]