$\frac{2x}{x^2 - 25}$ + $\frac{5}{5 - x}$ -$\frac{1}{x+5}$
= $\frac{2x}{(x-5)(x+5)}$ - $\frac{5}{x-5}$ - $\frac{1}{x+5}$
= $\frac{2x}{(x-5)(x+5)}$ - $\frac{5(x+5)}{(x-5)(x+5)}$ - $\frac{x-5}{(x-5)(x+5)}$
= $\frac{2x}{(x-5)(x+5)}$ -$\frac{5x+25}{(x-5)(x+5)}$-$\frac{x-5}{(x-5)(x+5)}$
=$\frac{2x-(5x+25)-x+5}{(x-5)(x+5)}$
=$\frac{2x-5x-25-x+5}{(x-5)(x+5)}$
= $\frac{-4x-20}{(x-5)(x+5)}$
=$\frac{-4(x+5)}{(x-5)(x+5)}$
=$\frac{-4}{x-5}$