Đáp án:
a)x-y
b)$\frac{x^{2}-x+1}{2(x-1)(x+1)}$
Giải thích các bước giải:
a)$\frac{x^{2}+y^{2}}{x-y}$ +$\frac{2xy}{y-x}$
=$\frac{x^{2}+y^{2}}{x-y}$-$\frac{2xy}{x-y}$
=$\frac{x^{2}+y^{2}-2xy}{x-y}$
=$\frac{x^{2}-2xy+y^{2}}{x-y}$
=$\frac{(x-y)^{2}}{x-y}$
=x-y
b)$\frac{5x-7}{2(x-1)}$ -$\frac{4x}{x^{2}-1}$ +$\frac{9-3x}{2(x-1)}$
=$\frac{5x-7}{2(x-1)}$-$\frac{4x}{(x-1)(x+1)}$ +$\frac{9-3x}{2(x-1)}$ Mẫu thức chung:2(x-1)(x+1)
=$\frac{5x^{2}-2x-7}{2(x-1)(x+1)}$ -$\frac{8x}{2(x-1)(x+1)}$ +$\frac{6x+9-3x^{2}}{2(x-1)(x+1)}$
=$\frac{5x^{2}-2x-7-8x+6x+9-3x^{2}}{2(x-1)(x+1)}$
=$\frac{2x^{2}-4x+2}{2(x-1)(x+1)}$
=$\frac{2(x^{2}-x+1)}{2(x-1)(x+1)}$
=$\frac{x^{2}-x+1}{(x-1)(x+1)}$