Đáp án:
Giải thích các bước giải:
\(\begin{array}{l} + )\,{x^2}\left( {x - 3} \right) + 12 - 4x = 0\\ \Leftrightarrow {x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} - 4} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 2 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 2\\x = 2\end{array} \right.\\ + )\,2\left( {x + 5} \right) - {x^2} - 5x = 0\\ \Leftrightarrow 2\left( {x + 5} \right) - x\left( {x + 5} \right) = 0\\ \Leftrightarrow \left( {x + 5} \right)\left( {2 - x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 5 = 0\\2 - x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 5\\x = 2\end{array} \right.\\ + )\,9{\left( {x - 1} \right)^2} - 4{\left( {x + 3} \right)^2} = 0\\ \Leftrightarrow 9\left( {{x^2} - 2x + 1} \right) - 4\left( {{x^2} + 6x + 9} \right) = 0\\ \Leftrightarrow 9{x^2} - 18x + 9 - 4{x^2} - 24x - 36 = 0\\ \Leftrightarrow 5{x^2} - 42x - 27 = 0\\ \Leftrightarrow \left( {x - 9} \right)\left( {5x + 3} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x - 9 = 0\\5x + 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 9\\x = \frac{{ - 3}}{5}\end{array} \right.\end{array}\)