Giải thích các bước giải:
`x(2x-4)=(2x+3)(x+2)-39`
`=>2x^2-4x=2x^2+4x+3x+6-39`
`=>2x^2-4x=2x^2+7x-33`
`=>11x-33=0`
`=>11(x-3)=0`
`=>x-3=0=>x=3`
`(3x-5)^2=(x+1)^2`
`=>(3x-5)^2-(x+1)^2=0`
`=>(3x-5-x-1)(3x-5+x+1)=0`
`=>(2x-6)(4x-4)=0`
`=>2(x-3).4(x-1)=0`
`=>`\(\left[ \begin{array}{l}x-3=0\\x-1=0\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=3\\x=1\end{array} \right.\)
`x^3-8=(x-2)(x+4)(x+10)`
`=>(x-2)(x^2+2x+4)-(x-2)(x^2+14x+40)=0`
`=>(x-2)(x^2+2x+4-x^2-14x-40)=0`
`=>(x-2)(-12x-36)=0`
`=>-12(x-2)(x+3)=0`
`=>`\(\left[ \begin{array}{l}x-2=0\\x+3=0\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\)