Đáp án:
`x ∈ {2/3 ; 1 ; 2}`
Giải thích các bước giải:
`d, (2x - 3)^8 = (2x - 3)^6`
`⇔ (2x - 3)^8 - (2x - 3)^6 = 0`
`⇔ (2x - 3)^6 .[(2x - 3)^2 - 1] = 0`
`⇒` $\left[\begin{matrix}(2x -3)^6 = 0\\ (2x - 3)^2 - 1 = 0\end{matrix}\right.$
`⇒` $\left[\begin{matrix}2x -3 = 0\\ (2x - 3)^2 = 1\end{matrix}\right.$
`⇒` $\left[\begin{matrix}2x= 3\\\left[\begin{matrix}2x -3 = 1\\ 2x - 3 = -1\end{matrix}\right. \end{matrix}\right.$ `⇒` $\left[\begin{matrix}x= \dfrac{3}{2} \\\left[\begin{matrix}2x = 4\\ 2x = 2\end{matrix}\right. \end{matrix}\right.$ `⇒` $\left[\begin{matrix}x= \dfrac{3}{2} \\\left[\begin{matrix}x = 2\\ x = 1\end{matrix}\right. \end{matrix}\right.$
Vậy `x ∈ {2/3 ; 1 ; 2}`