Đáp án:
$\begin{array}{l}
1)\frac{1}{4} + \frac{3}{4}x = \frac{5}{2}\\
\Rightarrow \frac{{1 + 3x}}{4} = \frac{{10}}{4}\\
\Rightarrow 1 + 3x = 10\\
\Rightarrow 3x = 9\\
\Rightarrow x = 3\\
2)\\
\left| {x - \frac{1}{4}} \right| = \frac{3}{8}\\
\Rightarrow \left| {\frac{{8x}}{8} - \frac{2}{8}} \right| = \frac{3}{8}\\
\Rightarrow \left| {\frac{{8x - 2}}{8}} \right| = \frac{3}{8}\\
\Rightarrow \left| {8x - 2} \right| = 3\\
\Rightarrow \left[ \begin{array}{l}
8x - 2 = 3\\
8x - 2 = - 3
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
8x = 5\\
8x = - 1
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \frac{5}{8}\\
x = - \frac{1}{8}
\end{array} \right.\\
3)\\
\left( {x - \frac{3}{2}} \right):3\frac{1}{2} = \frac{4}{7}\\
\Rightarrow \left( {x - \frac{3}{2}} \right):\frac{7}{2} = \frac{4}{7}\\
\Rightarrow x - \frac{3}{2} = \frac{4}{7}.\frac{7}{2}\\
\Rightarrow x - \frac{3}{2} = 2\\
\Rightarrow x = 2 + \frac{3}{2}\\
\Rightarrow x = \frac{7}{2}\\
4)\\
{8^x}:{4^x} = 4\\
\Rightarrow {\left( {8:4} \right)^x} = 4\\
\Rightarrow {2^x} = 4\\
\Rightarrow {2^x} = {2^2}\\
\Rightarrow x = 2\\
5)\\
\left| {x + \frac{2}{3}} \right| - 5 = - 2\\
\Rightarrow \left| {x + \frac{2}{3}} \right| = 3\\
\Rightarrow \left[ \begin{array}{l}
x + \frac{2}{3} = 3\\
x + \frac{2}{3} = - 3
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \frac{7}{3}\\
x = - \frac{{11}}{3}
\end{array} \right.\\
6)\\
\frac{{72 - x}}{{x + 40}} = \frac{7}{9}\left( {dkxd:x \ne - 40} \right)\\
\Rightarrow 9\left( {72 - x} \right) = 7\left( {x + 40} \right)\\
\Rightarrow 9.72 - 9x = 7x + 7.40\\
\Rightarrow 7x + 9x = 72.9 - 7.40\\
\Rightarrow 16x = 368\\
\Rightarrow x = 23
\end{array}$