( x + 1 )^3 + ( x - 1 )^3 = ( x - 1 ).( x + 1 ) + 4
⇒ x³ + 3x² + 3x + 1 + x³ - 3x² + 3x - 1 = x² -1 +4
⇒ x³ + 3x² + 3x + x³ - 3x² + 3x - x²= -1 +4 - 1 +1
⇒ 2x³ - x² + 6x - 3= 0
⇒ x²( 2x-1) + 3( 2x-1) = 0
⇒( 2x-1)( x² + 3) = 0
⇒ 2x- 1 = 0 hoặc x² + 3 = 0
⇒ x= 1/2 hoặc x ∈ ∅
Vậy x= 1/2