`a)2(x−5)−3(x+7)=14⇔2x−10−3x−21=14⇔−x=14+31=45⇔x=−45`
`b)5(x−6)−2(x+3)=12⇔5x−30−2x−6=12⇔3x=12+36=48⇔x=16`
`c)−7(3x−5)+2(7x−14)=28⇔−21x+35+14x−28=28⇔−7x=28−35+28=21⇔x=−3`
`d)5(3−2x)+5(x−4)=6−4x⇔15−10x+5x−20=6−4x⇔−5x+4x=6+5⇔−x=11⇔x=−11`
`e)−5(2−x)+4(x−3)=10x−15⇔−10+5x+4x−12=10x−15⇔9x−10x=−15+22=7⇔−x=7⇔x=−7`
`f)2(4x−8)−7(3+x)=|−4|(3−2)⇔8x−16−21−7x=12−8⇔x=4+37=41`
`g)8(x−|−7|)−6(x−2)=|−8|.6−50⇔8x−56−6x+12=48−50=−2⇔2x=−2+56−12=42⇔x=21`
`h)−7(5−x)−2(x−10)=15⇔−35+7x−2x+20=15⇔5x=15+15=30⇔x=6`
`k)4(x−1)−3(x−2)=−|−5|⇔4x−4−3x+6=−5⇔x=−5−2=−7`
`l)−4(x+1)+(89x−3)=24⇔−4x−4+89x−3=24⇔85x=24+7=31⇔x=3185`
`m)5x−30−2(x+6)=9⇔5x−30−2x−12=9⇔3x=9+42=51⇔x=17`
`n)−3(x−5)+6(x+2)=9⇔−3x+15+6x+12=9⇔3x=9−27=−18⇔x=−6`
`i)7(x−9)−5(6−x)=−6+11x⇔7x−63−30+5x=−6+11x⇔12x−11x=−6−33=−39⇔x=−39`
`j)10(x−7)−8(x+5)=6.(−5)+24⇔10x−70−8x−40=−30+24⇔2x=−6+110=104⇔x=52`