Giải thích các bước giải:
Gọi $M$ là giao điểm của 2 đồ thị hàm số $y = 2x + 3$ và $y = x + m - 5$
Tọa độ $M$ thỏa mãn hệ phương trình sau:
$\begin{array}{l}
\left\{ \begin{array}{l}
y = 2x + 3\\
y = x + m - 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = m - 8\\
y = 2m - 13
\end{array} \right.\\
\Leftrightarrow M\left( {m - 8;2m - 13} \right)
\end{array}$
Để $M$ thuộc góc phần tư thứ $II$
$\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{x_M} < 0\\
{y_M} > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m - 8 < 0\\
2m - 13 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m < 8\\
m > \dfrac{{13}}{2}
\end{array} \right.\\
\Leftrightarrow \dfrac{{13}}{2} < m < 8
\end{array}$
Vậy $\dfrac{{13}}{2} < m < 8$ thỏa mãn