\[\begin{array}{l}
y = \sin x + \cos 2x\\
\Rightarrow y' = \cos x - 2\sin 2x \Rightarrow y'' = - \sin x - 4\cos 2x\\
\Rightarrow y' = 0 \Leftrightarrow \cos x - 2\sin 2x = 0\\
\Leftrightarrow \cos x - 4\sin x\cos x = 0\\
\Leftrightarrow \cos x\left( {1 - 4\sin x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\sin x = \frac{1}{4}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
x = \arcsin \frac{1}{4} + m2\pi \\
x = \pi - \arcsin \frac{1}{4} + m2\pi
\end{array} \right.\\
\Rightarrow y''\left( {\frac{\pi }{2} + k\pi } \right) = - \sin \left( {\frac{\pi }{2} + k\pi } \right) - 4\cos 2\left( {\frac{\pi }{2} + k\pi } \right)\\
= - \sin \left( {\frac{\pi }{2} + k\pi } \right) - 4\cos \left( {\pi + k2\pi } \right) = - \sin \left( {\frac{\pi }{2} + k\pi } \right) + 4 = \left\{ \begin{array}{l}
3\,\,\,khi\,\,\,k\,\,chan\\
5\,\,\,khi\,\,\,k\,\,\,le
\end{array} \right.\\
\Rightarrow y''\left( {\frac{\pi }{2} + k\pi } \right) > \,\,0\,\,\forall k \Rightarrow x = \frac{\pi }{2} + k\pi \,\,\,la\,\,\,diem\,\,cuc\,\,tieu.\\
y''\left( {\arcsin \frac{1}{4} + m2\pi } \right) = - \sin \left( {\arcsin \frac{1}{4} + m2\pi } \right) - 4\cos 2\left( {\arcsin \frac{1}{4} + m2\pi } \right)\\
= - \frac{1}{4} - 4.\frac{7}{8} < 0\\
\Rightarrow x = \arcsin \frac{1}{4} + m2\pi \,\,\,\,la\,\,\,diem\,\,cuc\,\,dai.\\
y''\left( {\pi - \arcsin \frac{1}{4} + m2\pi } \right) = - \sin \left( {\pi - \arcsin \frac{1}{4} + m2\pi } \right) - 4\cos 2\left( {\pi - \arcsin \frac{1}{4} + m2\pi } \right)\\
= - \frac{1}{4} - \frac{7}{2} < 0\\
\Rightarrow x = \pi - \arcsin \frac{1}{4} + m2\pi \,\,\,\,la\,\,\,diem\,\,cuc\,\,dai.
\end{array}\]