ĐKXĐ: $x>0$
$P<-1$
$↔ \dfrac{\sqrt[]{x}-2}{x}+1<0$
$↔ \dfrac{x+\sqrt[]{x}-2}{x}<0$
$↔ x+\sqrt[]{x}-2<0$
$↔ x+2\sqrt[]{x}-\sqrt[]{x}-2<0$
$↔ \sqrt[]{x}(\sqrt[]{x}+2)-(\sqrt[]{x}+2)<0$
$↔ (\sqrt[]{x}+2)(\sqrt[]{x}-1)<0$
$↔ \left[ \begin{array}{l}\left\{ \begin{array}{l}\sqrt[]{x}+2>0\\\sqrt[]{x}-1<0\end{array} \right.\\\left\{ \begin{array}{l}\sqrt[]{x}+2<0\\\sqrt[]{x}-1>0\end{array} \right.\end{array} \right.$
$↔ 0<x<1$