Đáp án:
\(\begin{array}{l}
9,\\
{K_{\min }} = \dfrac{3}{4} \Leftrightarrow x = \dfrac{1}{2}\\
10,\\
{M_{\min }} = \dfrac{3}{4} \Leftrightarrow x = - \dfrac{1}{2}\\
11,\\
{N_{\min }} = - \dfrac{1}{4} \Leftrightarrow x = - \dfrac{1}{2}\\
12,\\
{L_{\min }} = - \dfrac{1}{4} \Leftrightarrow x = \dfrac{1}{2}
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
9,\\
K = {x^2} - x + 1\\
= \left( {{x^2} - x + \dfrac{1}{4}} \right) + \dfrac{3}{4}\\
= \left[ {{x^2} - 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] + \dfrac{3}{4}\\
= {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\\
{\left( {x - \dfrac{1}{2}} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow K = {\left( {x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4},\,\,\,\forall x\\
\Rightarrow {K_{\min }} = \dfrac{3}{4} \Leftrightarrow {\left( {x - \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x - \dfrac{1}{2} = 0 \Leftrightarrow x = \dfrac{1}{2}\\
\Rightarrow {K_{\min }} = \dfrac{3}{4} \Leftrightarrow x = \dfrac{1}{2}\\
10,\\
M = {x^2} + x + 1\\
= \left( {{x^2} + x + \dfrac{1}{4}} \right) + \dfrac{3}{4}\\
= \left[ {{x^2} + 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] + \dfrac{3}{4}\\
= {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\\
{\left( {x + \dfrac{1}{2}} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow M = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4},\,\,\,\forall x\\
\Rightarrow {M_{\min }} = \dfrac{3}{4} \Leftrightarrow {\left( {x + \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x + \dfrac{1}{2} = 0 \Leftrightarrow x = - \dfrac{1}{2}\\
\Rightarrow {M_{\min }} = \dfrac{3}{4} \Leftrightarrow x = - \dfrac{1}{2}\\
11,\\
N = {x^2} + x\\
= \left( {{x^2} + x + \dfrac{1}{4}} \right) - \dfrac{1}{4}\\
= \left[ {{x^2} + 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] - \dfrac{1}{4}\\
= {\left( {x + \dfrac{1}{2}} \right)^2} - \dfrac{1}{4}\\
{\left( {x + \dfrac{1}{2}} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow N = {\left( {x + \dfrac{1}{2}} \right)^2} - \dfrac{1}{4} \ge - \dfrac{1}{4},\,\,\,\forall x\\
\Rightarrow {N_{\min }} = - \dfrac{1}{4} \Leftrightarrow {\left( {x + \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x + \dfrac{1}{2} = 0 \Leftrightarrow x = - \dfrac{1}{2}\\
\Rightarrow {N_{\min }} = - \dfrac{1}{4} \Leftrightarrow x = - \dfrac{1}{2}\\
12,\\
L = {x^2} - x\\
= \left( {{x^2} - x + \dfrac{1}{4}} \right) - \dfrac{1}{4}\\
= \left[ {{x^2} - 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] - \dfrac{1}{4}\\
= {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{1}{4}\\
{\left( {x - \dfrac{1}{2}} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow L = {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{1}{4} \ge - \dfrac{1}{4},\,\,\,\forall x\\
\Rightarrow {L_{\min }} = - \dfrac{1}{4} \Leftrightarrow {\left( {x - \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x - \dfrac{1}{2} = 0 \Leftrightarrow x = \dfrac{1}{2}\\
\Rightarrow {L_{\min }} = - \dfrac{1}{4} \Leftrightarrow x = \dfrac{1}{2}
\end{array}\)