`a)`
`2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3(x^2-1)=5x^2+5x`
`<=>2x^2+3x^2-3=5x^5+5x`
`<=>5x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
Vậy `S={-3/5}`
$\\$
`b)`
`(x+2)^2-(x-2)^2=8x`
`<=>(x+2+x-2)(x+2-x+2)=8x`
`<=>4.2x=8x`
`<=>8x=8x`
Vậy phương trình có nghiệm luôn đúng với mọi x.
$\\$
`c)`
`(2x-1)(x^2-x+1)=2x^3-3x^2+2`
`<=>2x^3-3x^2+3x-1=2x^3-3x^2+2`
`<=>2x^3-2x^3-3x^2+3x^2+3x=2+1`
`<=>3x=3`
`<=>x=1`
Vậy `S={1}`
$\\$
`d)`
`(x+1)(x+2)(x+5)-x^3-8x^2+7=0`
`<=>x^3+8x^2+17x+10-x^3-8x^2+7=0`
`<=>(x^3-x^3)+(8x^2-8x^2)+17x+7+10=0`
`<=>17x=-17`
`<=>x=-1`
Vậy `S={-1}`