`a=40a^2-12a+1`
`⇒a/40 = a^2 - 3/10a + 1/40`
`⇔a/40 = (a^2- 2. a . 3/20 + 9 / 400 ) + 1/400`
`⇔a/40= (a- 3/20)^2 + 1/400`
`⇔a = 40(a-3/20)^2 + 40/400`
`⇔a = 40(a-3/20)^2 + 1/10.`
Có: `40(a-3/20)^2\ge0⇒40(a-3/20)^2 + 1/10\ge1/10.`
Dấu ''='' xảy ra khi `a-3/20=0⇔a=3/20.`
Vậy $Min_a$`=1/10⇔a=3/20.`