`Q=x^2-x+1`
`=(x^2-x+1/4)+3/4`
`=(x^2-1/2x-1/2x+1/4)+3/4`
`=[(x^2-1/2x)-(1/2x-1/4)]+3/4`
`=[x(x-1/2)-1/2(x-1/2)]+3/4`
`=(x-1/2)(x-1/2)+3/4`
`=(x-1/2)^2+3/4`
Vì: `(x-1/2)^2≥0` `∀x`
`⇒Q≥3/4`
Dấu $"="$ xảy ra khi: `(x-1/2)^2=0`
`⇒x-1/2=0`
`⇒x=1/2
Vậy `Q_min=3/4` khi `x=1/2`