Đáp án:
 
 \(C_7^3.C_3^0 + C_7^2.C_2^2 = 56\)
 
Giải thích các bước giải:
 
 \(\begin{array}{l}
 {\left[ {1 + {x^2}\left( {1 + x} \right)} \right]^7} = {\left( {{x^3} + {x^2} + 1} \right)^7}\\
  = \sum\limits_{k = 0}^7 {C_7^k{{\left( {{x^3} + {x^2}} \right)}^k}}  = \sum\limits_{k = 0}^7 {C_7^k\sum\limits_{i = 0}^k {C_k^i{x^{3i}}{x^{2\left( {k - i} \right)}}} } \\
  = \sum\limits_{k = 0}^7 {\sum\limits_{i = 0}^k {C_7^kC_k^i{x^{2k + i}}} } \\
  \Rightarrow De\,\,co\,\,he\,\,so\,\,cua\,\,{x^6} \Rightarrow \left\{ \begin{array}{l}
 2k + i = 6\\
 0 \le k \le 7\\
 0 \le i \le k\\
 i,\,\,k \in Z
 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
 \left\{ \begin{array}{l}
 i = 0\\
 k = 3
 \end{array} \right.\\
 \left\{ \begin{array}{l}
 i = 2\\
 k = 2
 \end{array} \right.
 \end{array} \right.\\
  \Rightarrow he\,\,so\,\,cua\,\,{x^6}\,\,trong\,\,khai\,\,trien\,\,tren\,\,la:\,\,\,C_7^3.C_3^0 + C_7^2.C_2^2 = 56.
 \end{array}\)