tìm hệ số của số hạng chứa x26 trong khai triển nhị thức niuton của :
\(\left(\frac{1}{x^4}+x^7\right)^n\) biết rằng \(C^1_{2n+1}+C^2_{2n+1}+-+C^n_{2n+1}=2^{20}-1\)
HELP!=- ai trả lời nhanh và đúng nhất mình sẽ tích 3 lần
\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)
\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)
\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)
\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)
\(\Rightarrow2n+1=21\Rightarrow n=10\)
Số hạng chứa \(x^{26}\) có dạng là:
\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)
\(\Rightarrow k=4\)
hệ số của \(x^{26}\) là:
\(C^4_{10}=210\)
Giải gúp mk vs Cho tập hợp A={1,2,3,4,5,}.có bao nhiêu cặp thứ tự (x,y) biết rằng:
a)x và y đều thuộc A
b){x,y} là tập con của A
C)x và y thuộc A sao cho x+y=6
2sin2(x-\(\frac{\pi}{4}\)) =2\(\sin^2x-\tan x\)
sinxsin5x+cosxcos5x= -\(sqrt(3/2)\)
a, tan(2x + 1).tan (3x -1) = 1
b, tanx + tan( x + π/4 ) = 1
giúp mình với cần gấp lắm ạ hiuhiu
tìm nghiệm của các phương trình sau trên khoảng đã cho : a) \(\tan\left(2x-15^o\right)=1\) với \(-180^o\le x\le90^o\) ; b) \(\cot3x=-\frac{1}{\sqrt{3}}\) với \(-\frac{\pi}{2}\le x\le0\)
a)vẽ đồ thị hàm số \(y=\tan x\) rồi chỉ ra trên đồ thị đó các điểm có hoành độ thuộc khoảng \(\left(-\pi;\pi\right)\) là nghiệm của mõi phương trình sau :
1) \(\tan x=-1\) ; 2) \(\tan x=0\)
b) cũng câu hỏi tương tự cho hàm số \(y=\cot x\) đối với mỗi phương trình sau : 1) \(\cot x=\frac{\sqrt{3}}{3}\) ; 2) \(\cot x=1\)
dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
trong các khẳng định sau , khẳng định nào đúng ?khẳng định nào sai ? giải thích vì sao ?
a) trên mỗi khoảng mà hàm số y = \(\sin x\) đồng biến thì hàm số y = \(\cos x\) nghịch biến .
b) trên mỗi khoảng mà hàm số y = \(\sin^2x\) đồng biến thì hàm số y = \(\cos^2x\) nghịch biến
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
xét tính chẵn , lẻ của mỗi hàm số sau : a) y = \(\sin x-\cos x\) ; b) y = \(\sin x\cos^2x+\tan x\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến