Tìm m để phương trình \(\left| {\dfrac{1}{2}{x^4} - 4{x^2} + 3} \right| = \log m\) để phương trình có 8 nghiệm phân biệt. A.\({10^{ - 5}} < m < 1\) B.\(1 < m < {10^3}\) C.\({10^3} < m < {10^5}\) D.\(m > {10^5}\)
Đáp án đúng: B Cách giải nhanh bài tập nàyÁp dụng cách vẽ đồ thị hàm số ở Dạng 1 để vẽ đồ thị hàm số và làm bài toán này. Số nghiệm của phương trình \(\left| {\dfrac{1}{2}{x^4} - 4{x^2} + 3} \right| = \log m\) là số giao điểm của đồ thị hàm số \(y = \left| {\dfrac{1}{2}{x^4} - 4{x^2} + 3} \right|\) và đường thẳng \(y = \log m\) . Ta có đồ thị hàm số \(y = \left| {\dfrac{1}{2}{x^4} - 4{x^2} + 3} \right|\) như sau:
Phương trình đã cho có 8 nghiệm phân biệt \( \Leftrightarrow \) đường thẳng \(y = \log m\) cắt đồ thị hàm số \(y = \left| {\dfrac{1}{2}{x^4} - 4{x^2} + 3} \right|\) tại 8 điểm phân biệt \( \Leftrightarrow 0 < \log m < 3 \Leftrightarrow 1 < m < {10^3}\). Chọn B.