`a,` `f(x)=x^3-x^2+x-1=0`
`⇒x^2(x-1)+(x-1)=0`
`⇒(x^2+1)(x-1)=0`
\(⇒\left[ \begin{array}{l}x^2+1=0 (\text{vô lý})\\x-1=0⇒x=1(\text{vô lý})\end{array} \right.\)
`Vậy` `S={1}`
`b,` `g(x)=11^3+5x^2+4x+10=0`
`⇒11x^3+11x^2-6^2-6x+10x+10=0`
`⇒11x^2(x+1)-6x(x+1)+10(x+1)=0`
`⇒(x+1)(11x^2-6x+10)=0`
\(⇒\left[ \begin{array}{l}x+1=0⇒x=-1\\11x^2-6x+10=0 (\text{vô lý})\end{array} \right.\)
`Vậy` `S={-1}`