b,
$A=2n^3+n^2+7n+1$
$=n^2(2n-1)+2n^2+7n+1$
$n^2(2n-1) \vdots 2n-1$
$\Rightarrow 2n^2+7n+1 \vdots 2n-1$
$2n^2+7n+1$
$=n(2n-1)+8n+1$
$n(2n-1) \vdots 2n-1$
$\Rightarrow 8n+1 \vdots 2n-1$
$8n+1=8n-4+5=4(2n-1)+5 \vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Leftrightarrow 2n-1\in \{\pm 1;\pm 5\}$
$\Leftrightarrow n\in \{1;0; 3; -2\}$
c,
$A=n^3+2n^2-3n+2$
$=n^2(n+3)-n^2-3n+2$
$n^2(n+3) \vdots n+3$
$\Rightarrow -n^2-3n+2 \vdots n+3$
$-n^2-3n+2$
$=-n(n+3)+2 \vdots n+3$
$\Rightarrow 2\vdots n+3$
$\Leftrightarrow n+3\in \{\pm 1;\pm 2\}$
$\Leftrightarrow n\in\{-2; -4; -1; -5\}$