D(x) = \(x^2+x\)
Ta có : \(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) là nghiệm của đa thức D(x)
E(x) = \(x^2+7x-8\)
= \(x^2+2x.\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{81}{4}\)
= \(\left(x+\dfrac{7}{2}\right)^2-\dfrac{81}{4}\)
Ta có : \(\left(x+\dfrac{7}{2}\right)^2-\dfrac{81}{4}=0\)
\(\Rightarrow\left(x+\dfrac{7}{2}\right)^2=\dfrac{81}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{7}{2}=\dfrac{9}{2}\\x+\dfrac{7}{2}=-\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\) là nghiệm của đa thức E(x)
G(x) = \(5x^2+9x+4\)
=\(5\left(x^2+\dfrac{9}{5}x+\dfrac{4}{5}\right)\)
= \(5\left(x^2+2x.\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{1}{100}\right)\)
= \(5\left[\left(x+\dfrac{9}{10}\right)^2-\dfrac{1}{100}\right]\)
= \(5\left(x+\dfrac{9}{10}\right)^2-\dfrac{1}{20}\)
Ta có : \(5\left(x+\dfrac{9}{10}\right)^2-\dfrac{1}{20}=0\)
\(\Rightarrow5\left(x+\dfrac{9}{10}\right)^2=\dfrac{1}{20}\)
\(\Rightarrow\left(x+\dfrac{9}{10}\right)^2=\dfrac{1}{100}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{9}{10}=\dfrac{1}{10}\\x+\dfrac{9}{10}=-\dfrac{1}{10}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{5}\\x=-1\end{matrix}\right.\) là nghiệm của đa thức G(x)