Câu 1:
a, ( x-1)²= | x²-1|
⇔ | x-1|²= | x-1|.| x+1|
⇔ | x-1|.( | x-1|-| x+1|)= 0
b, x+( x+1)+( x+2)+...+( x+2010)= 2029099
⇔ x+x+...+x+( 0+1+2+....+2010)= 2029099
⇔ 2011.x+( 2010+0).[( 2010-0):1+1]:2= 2029099
⇔ 2011.x+2021055= 2029099
⇔ 2011.x= 8044
⇔ x= 4
c, 1+5+9+13+...+x= 501501
⇔ ( x+1).[( x-1):4+1]:2= 501501
⇔ ( x+1).( 0,25.x+0,75)= 1003002
⇔ 0,25.x²+0,75.x+0,25.x+0,75= 1003002
⇔ x²+4x+3= 4012008
⇔ x²+4x-4012008= 0
Giải nghiệm ta có x∉ Z
⇒ x∈ ∅
d, 4.( x-1)-( 3x-7)= 0
⇔ 4x-4-3x+7= 0
⇔ x+3= 0
⇔ x= -3
Bài 2:
a, 3n+5⋮ n-2
⇔ 3.( n-2)+11⋮ n-2
⇒ 11⋮ n-2
⇒ n-2∈ Ư( 11)= { -11; -1; 1; 11}
⇔ n∈ { -9; 1; 3; 13}
b, 3n+2⋮ 2n-1
⇒ 2.( 3n+2)⋮ 2n-1
⇔ 6n+4⋮ 2n-1
⇔ 3.( 2n-1)+7⋮ 2n-1
⇒ 2n-1∈ Ư( 7)= { -7; -1; 1; 7}
⇔ n∈ { -3; 0; 1; 4}
c, n²+3n+9⋮ n+1
⇔ n²+2n+1+n+1+7⋮ n+1
⇔ ( n+1)²+n+1+7⋮ n+1
⇒ 7⋮ n+1
⇒ n+1∈ Ư( 7)= { -7; -1; 1; 7}
⇔ n∈ { -8; -2; 0; 6}
d, n+2⋮ n²-2
⇔ n.( n+2)⋮ n²-2
⇔ n²-2+2n+2⋮ n²-2
⇒ 2n+2⋮ n²-2
Mà n+2⋮ n²-2
⇒ 2n+4⋮ n²-2
⇒ 2n+4-2n-2⋮ n²-2
⇒ 2⋮ n²-2
⇒ n²-2∈ U( 2)= { -2; -1; 1; 2}
⇒ n²∈ { 0; 1; 3; 4}
Vì n∈ Z⇒ n∈ { 0; ±1; ±2}