$\text{A nguyên khi và chỉ khi :}$
$\text{ x+$\sqrt[]{x}$+1 $\vdots$ $\sqrt[]{x}$-1}$
$\text{⇔x+2+$\sqrt[]{x}$-1 $\vdots$ $\sqrt[]{x}$-1}$
$\text{⇔ $(\sqrt[]{x})^{2}$- 1 + 3 $\vdots$ $\sqrt[]{x}$-1}$
$\text{⇔ 3 $\vdots$ $\sqrt[]{x}$-1}$
$\text{⇔ $\sqrt[]{x}$-1 $\in$ Ư(3)={±1;±3}}$
$\text{Ta có bảng sau :}$
\begin{array}{|c|c|c|}\hline \text{$\sqrt[]{x}$-1}&\text{-3}&\text{-1}&\text{1}&\text{3}\\\hline \text{x}&\text{||}&\text{0}&\text{4}&\text{16}\\\hline \text{Kết quả}&\text{(L)}&\text{(Tm)}&\text{(Tm)}&\text{(Tm)}\\\hline\end{array}
CHO MK CTLHN NHA:(