$\begin{array}{l}b)\quad \displaystyle\int\left(\sin3x - \cos x + 2e^{2x} + \dfrac5x \right)dx\\ = \displaystyle\int\sin3xdx - \displaystyle\int\cos xdx + 2\displaystyle\int e^{2x}dx + 5\displaystyle\int\dfrac{dx}{x}\\ = -\dfrac{1}{3}\cos3x - \sin x + 2\cdot\dfrac{1}{2}e^{2x} + 5\ln|x| + C\\ = -\dfrac{1}{3}\cos3x - \sin x + e^{2x} + 5\ln|x| + C\\ d) \quad \displaystyle\int(2 - 7x)^6dx\\ = -\dfrac{1}{7}\cdot\dfrac{(2-7x)^7}{7} + C\\ = - \dfrac{1}{49}(2-7x)^7 + C \end{array}$