Đáp án + Giải thích các bước giải:
$d)(2x+1)^4=(2x+1)^6\\⇔(2x+1)^4-(2x+1)^6=0\\⇔(2x+1)^4 . 1-(2x+1)^4 . (2x+1)^2=0\\⇔(2x+1)^4 . [1-(2x+1)^2]=0$
`⇔[((2x+1)^4=0),(1-(2x+1)^2=0):}`
`⇔[(2x+1=0),((2x+1)^2=1):}`
`⇔[(2x=-1),([(2x+1=1),(2x+1=-1):}):}`
`⇔[(x=-1/2),([(2x=0),(2x=-2):}):}`
`⇔[(x=-1/2),([(x=0),(x=-1):}):}`
Vậy `S={{-1/2;0;-1}`