$x^2 + y^2 = 0$
Vì : $x^2;y^2 ≥ 0 ∀ x;y$
$⇒ x^2 = y^2 = 0$
$⇒$ $\left\{\begin{matrix}x=0 & \\ y=0& \end{matrix}\right.$
Vậy `(x;y)=(0;0)`
`(x-1)^2+(y+2)^2=0`
Vì : $(x-1)^2;(y+2)^2 ≥ 0 ∀ x;y$
$⇒ (x-1)^2 = (y+2)^2 = 0$
$⇒$ $\left\{\begin{matrix}x=1& \\ y=-2& \end{matrix}\right.$
Vậy `(x;y)=(1;-2)`