Đáp án:
Giải thích các bước giải:
$xy-y+x=20$
$⇒y.(x-1)+x-1=20-1$
$⇒y.(x-1)+(x-1)=19$
$⇒(y+1).(x-1)=19=19.1=1.19=(-1).(-19)=(-19).(-1)$
$TH1:(y+1).(x-1)=19.1$
$⇒y=18;x=2$
$TH2:(y+1).(x-1)=1.19$
$⇒y=0;x=20$
$TH3:(y+1).(x-1)=(-19).(-1)$
$⇒y=-20;x=0$
$TH4:(y+1).(x-1)=(-1).(-19)$
$⇒y=-2;x=-18$
Vậy...
$ $
$xy+x-3y=30$
$⇒x.(y+1)-3y-3=30-3$
$⇒x.(y+1)-3.(y+1)=27$
$⇒(x-3).(y+1)=27=27.1=1.27=(-1).(-27)=(-27).(-1)=9.3=3.9=(-3).(-9)=(-9).(-3)$
$TH1:(x-3).(y+1)=27.1$
$⇒x=30;y=0$
$TH2:(x-3).(y+1)=1.27$
$⇒x=4;y=26$
$TH3:(x-3).(y+1)=(-1).(-27)$
$⇒x=2;y=-28$
$TH4:(x-3).(y+1)=(-27).(-1)$
$⇒x=-24;y=-2$
$TH5:(x-3).(y+1)=9.3$
$⇒x=12;y=2$
$TH6:(x-3).(y+1)=3.9$
$⇒x=6;y=8$
$TH7:(x-3).(y+1)=(-3).(-9)$
$⇒x=0;y=-10$
$TH8:(x-3).(y+1)=(-9).(-3)$
$⇒x=-6;y=-4$
Vậy...
$ $
$2x+1$ $\vdots$ $x+2$
$⇒2x+4-4+1$ $\vdots$ $x+2$
$⇒2.(x+2)-3$ $\vdots$ $x+2$
$⇒3$ $\vdots$ $x+2$
$⇒x+2∈${$3;1;-1;-3$}
$⇒x∈${$1;-1;-3;-5$}
$ $
$x^{2}$ $\vdots$ $x+3$
$⇒x^{2}+3x-3x$ $\vdots$ $x+3$
$⇒x.(x+3)-3x$ $\vdots$ $x+3$
$⇒-3x$ $\vdots$ $x+3$
$⇒-3x-9+9$ $\vdots$ $x+3$
$⇒-3.(x+3)+9$ $\vdots$ $x+3$
$⇒9$ $\vdots$ $x+3$
$⇒x+3∈${$9;3;1;-1;-3;-9$}
$⇒x∈${$6;0;-2;-4;-6;-12$}