Đáp án:
Giải thích các bước giải:
$\dfrac{2y}{3}-\dfrac{5}{x+1}=\dfrac{1}{3}$
$⇒\dfrac{5}{x+1}=\dfrac{2y-1}{3}$
$⇒(x+1)(2y-1)=5.3$
$⇒(x+1)(2y-1)=15=5.3=3.5=(-3)(-5)=(-5)(-3)=15.1=1.15=(-1).(-15)=(-15).(-1)$
$TH1:(x+1)(2y-1)=5.3$
$⇒x=4;y=2$
$TH2:(x+1)(2y-1)=3.5$
$⇒x=2;y=3$
$TH3:(x+1)(2y-1)=(-3).(-5)$
$⇒x=-4;y=-2$
$TH4:(x+1)(2y-1)=(-5).(-3)$
$⇒x=-6;y=-1$
$TH5:(x+1)(2y-1)=15.1$
$⇒x=14;y=1$
$TH6:(x+1)(2y-1)=1.15$
$⇒x=0;y=8$
$TH7:(x+1)(2y-1)=(-15).(-1)$
$⇒x=-16;y=0$
$TH8:(x+1)(2y-1)=(-1).(-15)$
$⇒x=-2;y=-7$
Vậy...