X x $\frac{15}{2}$ - $\frac{1}{3}$ x ($\frac{1}{4}$ + X) = 96$\frac{2}{3}$
X x $\frac{15}{2}$ - $\frac{1}{3}$ x $\frac{1}{4}$ + $\frac{1}{3}$ x X = $\frac{290}{3}$
X x ($\frac{15}{2}$ + $\frac{1}{3}$) - $\frac{1}{12}$ = $\frac{290}{3}$
X x $\frac{47}{6}$ = $\frac{290}{3}$ + $\frac{1}{12}$
X x $\frac{47}{6}$ = $\frac{387}{4}$
X = $\frac{387}{4}$ : $\frac{47}{6}$
X = $\frac{1161}{94}$
Vậy X = $\frac{1161}{94}$.