Đáp án:
$A=\dfrac{3^{2006}-1}{2.3^{2006}}$
Giải thích các bước giải:
Ta có: $A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+.....+\dfrac{1}{3^{2006}}$
⇒ $3A=3.(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+.....+\dfrac{1}{3^{2006}})$
⇔ $3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{2005}}$
Mặt khác:
$3A-A=(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.....+\dfrac{1}{3^{2005}})-(\dfrac{1}{3}+\dfrac{1}{3^2}+.....+\dfrac{1}{3^{2006}})$
⇔ $2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+......+\dfrac{1}{3^{2005}}-\dfrac{1}{3}-\dfrac{1}{3^2}-....-\dfrac{1}{3^{2006}}$
⇔ $2A=1-\dfrac{1}{3^{2006}}$
⇔ $2A=\dfrac{3^{2006}-1}{3^{2006}}$
⇔ $A=\dfrac{3^{2006}-1}{2.3^{2006}}$
Chúc bạn học tốt !!!!