Giải thích các bước giải:
A = $2^{100}$ - $2^{99}$ - $2^{98}$ - ... - $2^{2}$ - 2 - 1
2A = 2($2^{100}$ - $2^{99}$ - $2^{98}$ - ... - $2^{2}$ - 2 - 1)
2A = $2^{101}$ - $2^{100}$ - $2^{99}$ - ... - $2^{3}$ - $2^{2}$ - 2
A = ($2^{101}$ - $2^{100}$ - $2^{99}$ - ... - $2^{3}$ - $2^{2}$ - 2)-($2^{100}$ - $2^{99}$ - $2^{98}$ - ... - $2^{2}$ - 2 - 1)
A = $2^{101}$ - 2($2^{100}$) + 1
A = $2^{101}$ - $2^{101}$ + 1
A = 1