Đáp án:
Giải thích các bước giải:
$A=\sqrt{8}-5\sqrt{32}+3\sqrt{72}$
$A=2\sqrt{2}-5.4\sqrt{2}+3.6\sqrt{2}$
$A=2\sqrt{2}-20\sqrt{2}+18\sqrt{2}$
$A=0$
$B=\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}$
$B=2\sqrt{5}-6\sqrt{5}-12\sqrt{5}+5\sqrt{5}$
$B=-11\sqrt{5}$
$C=\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}$
$C=\sqrt{5}-2+\sqrt{5}+1$
$C=2\sqrt{5}-1$
$D=\sqrt{9-4\sqrt{2}}-\sqrt{11+6\sqrt{2}}$
$D=\sqrt{9-2\sqrt{8}}-\sqrt{11+6\sqrt{2}}$
$D=\sqrt{8}-1-3-\sqrt{2}$
$D=\sqrt{8}-4-\sqrt{2}$
$D=\sqrt{2}-4$
$E=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}$
$E=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}$
$E=-2\sqrt{3}$