Đáp án:
`B=4.`
Giải thích các bước giải:
`B=((sqrt(10)+sqrt6)(sqrt{4-sqrt(15)}))/(8-2sqrt(15))-sqrt(15)`
`=((sqrt2(sqrt5+sqrt3))(sqrt{4-sqrt(15)}))/(5-2sqrt5sqrt3+3)-sqrt(15)`
`=((sqrt5+sqrt3)sqrt{8-2sqrt15})/(sqrt5-sqrt3)^2-sqrt(15)`
`=((sqrt5+sqrt3)(sqrt5-sqrt3))/(sqrt5-sqrt3)^2-sqrt(15)`
`=(sqrt5+sqrt3)/(sqrt5-sqrt3)-sqrt(15)`
`=((sqrt5+sqrt3)(sqrt5+sqrt3))/(5-3)-sqrt(15)`
`=((sqrt5+sqrt3)^2)/2-sqrt(15)`
`=(8+2sqrt(15))/2-sqrt(15)`
`=4+sqrt(15)-sqrt(15)=4`
Vậy `B=4.`