a) $3^4.5^4 - (15^2 - 1)(15^2 + 1)$
$= 15^4 - (15^4 - 1)$
$= 1$
b) $B = x^4 - 12x^3+ 12x^2 - 12x + 1$
$= x^4 - 11x^3 - x^3 + 11x^2 + x^2 - 11x - x + 11 - 10$
$= x^3(x - 11) - x^2(x - 11) + x(x - 11) - (x - 11) - 10$
$= (x -11)(x^3 - x^2 + x -1) -10$
Do $x = 11$
nên $x - 11 = 0$
$\Rightarrow (x -11)(x^3 - x^2 + x -1) = 0$
$\Rightarrow B = - 10$