Đáp án đúng: B
Giải chi tiết:\(\begin{array}{l}\,M\left( x \right) + {\rm N}\left( x \right) = \left( {3{x^5} - 2{x^3} + {x^2} + x - 6} \right) + \left( {3{x^5} - {x^4} - 4{x^3} - \frac{1}{2}x + \frac{1}{3}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {3{x^5} + 3{x^5}} \right) + \left( { - {x^4}} \right) + \left( { - 2{x^3} - 4{x^3}} \right) + {x^2} + \left( {x - \frac{1}{2}x} \right) + \left( { - 6 + \frac{1}{3}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 6{x^5} - {x^4} - 6{x^3} + {x^2} - \frac{1}{2}x - \frac{{17}}{3}\\M\left( x \right) - {\rm N}\left( x \right) = \left( {3{x^5} - 2{x^3} + {x^2} + x - 6} \right) - \left( {3{x^5} - {x^4} - 4{x^3} - \frac{1}{2}x + \frac{1}{3}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3{x^5} - 2{x^3} + {x^2} + x - 6 - 3{x^5} + {x^4} + 4{x^3} + \frac{1}{2}x - \frac{1}{3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {3{x^5} - 3{x^5}} \right) + {x^4} + \left( { - 2{x^3} + 4{x^3}} \right) + {x^2} + \left( {x + \frac{1}{2}x} \right) + \left( { - 6 - \frac{1}{3}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {x^4} + 2{x^3} + {x^2} + \frac{3}{2}x - \frac{{19}}{3}\end{array}\)
Chọn B