Tính \(P\left( x \right) + Q\left( x \right)\) và \(P\left( x \right) - Q\left( x \right).\)
A.\(\begin{array}{l}\,M\left( x \right) + {\rm N}\left( x \right) = -2{x^5} - {x^4} - 6{x^3} + {x^2} - \frac{1}{2}x - \frac{{17}}{3}\\\,\,\,\,M\left( x \right) - {\rm N}\left( x \right) = {x^4} + 2{x^3} + {x^2} + \frac{3}{2}x - \frac{{19}}{3}\end{array}\)
B.\(\begin{array}{l}\,M\left( x \right) + {\rm N}\left( x \right) = 6{x^5} - {x^4} - 6{x^3} + {x^2} - \frac{1}{2}x - \frac{{17}}{3}\\\,\,\,\,M\left( x \right) - {\rm N}\left( x \right) = {x^4} + 2{x^3} + {x^2} + \frac{3}{2}x - \frac{{19}}{3}\end{array}\)
C.\(\begin{array}{l}\,M\left( x \right) + {\rm N}\left( x \right) = 9{x^5} - {x^4} - 6{x^3} + {x^2} - \frac{1}{2}x - \frac{{1}}{3}\\\,\,\,\,M\left( x \right) - {\rm N}\left( x \right) = {x^4} + 2{x^3} + {x^2} + \frac{3}{2}x - \frac{{19}}{3}\end{array}\)
D.\(\begin{array}{l}\,M\left( x \right) + {\rm N}\left( x \right) = 6{x^5} - {x^4} - 6{x^3} + {x^2} - \frac{1}{2}x - \frac{{17}}{3}\\\,\,\,\,M\left( x \right) - {\rm N}\left( x \right) = {x^4} - 2{x^3} + {x^2} + \frac{3}{2}x - \frac{{19}}{3}\end{array}\)

Các câu hỏi liên quan