Tính S = a^2 + b^9 + c^2016
Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\) Tính \(S=a^2+b^9+c^{2016}\)
Lời giải:
Từ \(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\leq 1\Rightarrow -1\leq a,b,c\leq 1\)
Có \(a^3+b^3+c^3=a^2+b^2+c^2\)
\(\Leftrightarrow a^2(a-1)+b^2(b-1)+c^2(c-1)=0\)
Vì \(a,b,c\leq 1\) nên \(\left\{\begin{matrix} a^2(a-1)\leq 0\\ b^2(b-1)\leq 0\\ c^2(c-1)\leq 0\end{matrix}\right.\Rightarrow a^2(a-1)+b^2(b-1)+c^2(c-1)\leq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^2(a-1)=0\\ b^2(b-1)=0\\ c^2(c-1)=0\end{matrix}\right.\)
Mà \(a^3+b^3+c^3=1\) nên trong \(a,b,c\) có hai số bằng $0$ và một số bằng $1$
Suy ra \(S=a^2+b^9+c^{2016}=1\)
Giải phương trình căn(x^2-3x+2)+3=3căn(x−1)+căn(x−2)
giải phương trình
\(\sqrt{x^2-3x+2}+3=3\sqrt{x-1}+\sqrt{x-2}\)
Rút gọn A=1/căn(7-căn24)+1 - 1/căn(7+căn24)+1
Rút gọn:
A= \(\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)
B=\(\dfrac{2}{\sqrt{8-2\sqrt{5}}}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{3}{\sqrt{7+2\sqrt{10}}}\)
Tìm các số x,y,z thỏa mãn x+y+z+8=2
tìm các số x,y,z thỏa mãn: x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Tính chữ số tận cùng của 17^2015
Tính chữ số tận cùng của \(17^{2015}\)
Giải phương trình căn(4+2x-x^2)=x-2
Giải phương trình:
a) \(\sqrt{4+2x-x^2}=x-2.\)
Chứng minh rằng x^3/(1+y)(1+x) + y^3/(1+z)(1+x) + z^3/(1+y)(1+x) >=3/4
cho x, y là các số dương thỏa mãn xyz=1. CMR \(\dfrac{x^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}>=\dfrac{3}{4}\)
Chứng minh rằng căna+1+cănb+1+cănc+1
Cho a, b, c là các số không âm và a+b+c=1. CMR: \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3.5\)
Biết tan α = căn3 hãy tính sin α, cos α, cot α
bài 1
a) Biết tan \(\alpha=\sqrt{3}\) hãy tính sin \(\alpha\) , cos \(\alpha\) , cot \(\alpha\)
b) hãy tính tan\(\alpha\) biết sin\(\alpha=\dfrac{15}{17}\)
bài 2 : cho \(\alpha\) là góc nhọn bất kì. CMR biểu thức sau khong phụ thuộc vào \(\alpha\)
A = (sin \(\alpha+cos\alpha\))\(^2\) + \(\left(\sin\alpha-\cos\alpha\right)^2+2\)
Giải phương trình căn(x−6cănx+9)=2
a,\(\sqrt{x-6\sqrt{x}+9}=2\)
b,\(\dfrac{x+2}{17}+\dfrac{x+4}{15}+\dfrac{x+6}{13}=\dfrac{x+8}{11}+\dfrac{x+10}{9}+\dfrac{x+12}{7}\)
Chứng minh rằng căn(a+b)=căn(a-1)+căn(cănb-1)
Cho a>1 , b>1 và \(\dfrac{1}{a}+\dfrac{1}{b}=1\)
CMR : \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{\sqrt{b-1}}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến