Tính thể tích \(V\) của khối nón có độ dài đường sinh \(l = 5a\) và bán kính của đường tròn đáy là \(r = 3a\) A.\(V = 36\pi {a^3}\) B.\(V = 12\pi {a^3}\) C.\(V = 15\pi {a^3}\) D.\(V = 45\pi {a^3}\)
Đáp án đúng: B Phương pháp giải: - Tính chiều cao \(h\) theo công thức \({l^2} = {h^2} + {r^2}\). - Sử dụng công thức tính thể tích khối nón \(V = \dfrac{1}{3}\pi {r^2}h\).Giải chi tiết:Ta có: \({l^2} = {h^2} + {r^2} \Rightarrow h = \sqrt {{l^2} - {r^2}} = \sqrt {{{\left( {5a} \right)}^2} - \left( {3{a^2}} \right)} = 4a\). Vậy thể tích khối nón là: \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .{\left( {3a} \right)^2}.4a = 12\pi {a^3}\). Chọn B.