Đáp án đúng: C Ta có AD // BC nên $ \widehat{CB\text{D}}=\widehat{B\text{D}A} $ AB // CD nên $ \widehat{AB\text{D}}=\widehat{B\text{D}C} $ Xét $ \Delta AB\text{D} $ và $ \Delta C\text{D}B $ có $ \left\{ \begin{array}{l} \widehat{CB\text{D}}=\widehat{B\text{D}A} \\ \widehat{AB\text{D}}=\widehat{B\text{D}C} \\ B\text{D}\,\,chung \end{array} \right.\Rightarrow \Delta AB\text{D}=\Delta C\text{D}B(g.c.g)\Rightarrow \left\{ \begin{array}{l} AB=C\text{D} \\ A\text{D}=BC \end{array} \right. $