Đáp án + Giải thích các bước giải !!
Xét ΔADE và ΔBCE , ta có:
ED = EC (vì AEDC cân tại E)
∠(ADE) = ∠(BCE) = 75o
AD = BC (gt)
Suy ra: ΔADE = ΔBCE (c.g.c)
⇒ AE = BE (1)
* Trong ΔADE, ta có:
∠(AFD) = 180o – (∠(FAD) + ∠(FDA) ) = 180o – (15o + 15o) = 150o
∠(AFD) + ∠(DFE) + ∠(AFE) = 360o
⇒ ∠(AFE) = 360o - (∠(AFD) + ∠(DFE) ) = 360o – (150o + 60o) = 150o
* Xét ΔAFD và ΔAFE, ta có: AF cạnh chung
∠(AFD) = ∠(AFE) = 150o
DE = EF (vì ΔDFE đều)
Suy ra: ΔAFD = ΔAFE (c.g.c) ⇒ AE = AD
Mà AD = AB (gt)
Suy ra: AE = AB (2)
Từ (1) và (2) suy ra: AE = AB = BE
Vậy ΔAEB đều.