Đáp án đúng: D
Phương pháp giải:
- Gọi \(M\left( {1 + 2t;\,\,2 - t;\,\,1 + t} \right) \in d\).- Tính \(MA + MB\) theo \(t\).- Sử dụng BĐT \(\left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right| \ge \left| {\overrightarrow u + \overrightarrow v } \right|\), dấu “=” xảy ra khi \(\overrightarrow u ,\,\,\overrightarrow v \) cùng phương.Giải chi tiết:Vì \(M \in d \Rightarrow M\left( {1 + 2t;\,\,2 - t;\,\,1 + t} \right)\).Khi đó ta có \(\overrightarrow {MA} = \left( {2t;\,\, - t + 7;\,\,t + 1} \right),\,\,\overrightarrow {MB} = \left( {2t + 1;\,\, - t;\,\,t + 4} \right)\)\(\begin{array}{l} \Rightarrow MA + MB = \sqrt {4{t^2} + {{\left( { - t + 7} \right)}^2} + {{\left( {t + 1} \right)}^2}} + \sqrt {{{\left( {2t + 1} \right)}^2} + {t^2} + {{\left( {t + 4} \right)}^2}} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt {6{t^2} - 12t + 50} + \sqrt {6{t^2} + 12t + 17} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt {6{{\left( {t - 1} \right)}^2} + 44} + \sqrt {6{{\left( {t + 1} \right)}^2} + 11} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt 6 .\sqrt {{{\left( {t - 1} \right)}^2} + \dfrac{{22}}{3}} + \sqrt 6 \sqrt {{{\left( {t + 1} \right)}^2} + \dfrac{{11}}{6}} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sqrt 6 .\left( {\left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right|} \right)\end{array}\)Với \(\overrightarrow u \left( {t - 1;\sqrt {\dfrac{{22}}{3}} } \right);\,\,\overrightarrow v = \left( { - t - 1;\sqrt {\dfrac{{11}}{6}} } \right)\).Áp dụng BĐT \(\left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right| \ge \left| {\overrightarrow u + \overrightarrow v } \right|\) ta có: \(\sqrt {{{\left( {t - 1} \right)}^2} + \dfrac{{22}}{3}} + \sqrt {{{\left( {t + 1} \right)}^2} + \dfrac{{11}}{6}} \ge \sqrt {{{\left( {t - 1 - t - 1} \right)}^2} + {{\left( {\sqrt {\dfrac{{22}}{3}} + \sqrt {\dfrac{{11}}{6}} } \right)}^2}} = \sqrt {\dfrac{{33}}{2}} \)Dấu “=” xảy ra khi \(\overrightarrow u ,\,\,\overrightarrow v \) cùng phương \( \Rightarrow \dfrac{{t - 1}}{{ - t - 1}} = 2 \Leftrightarrow t - 1 = - 2t - 2 \Leftrightarrow t = - \dfrac{1}{3}\), khi đó \(M\left( {\dfrac{1}{3};\dfrac{7}{3};\dfrac{2}{3}} \right)\).\( \Rightarrow MA + MB\) đạt giá trị nhỏ nhất bằng \(\sqrt 6 .\sqrt {\dfrac{{33}}{2}} = 3\sqrt {11} \) khi \(M\left( {\dfrac{1}{3};\dfrac{7}{3};\dfrac{2}{3}} \right)\)\( \Rightarrow a = \dfrac{1}{3},\,\,b = \dfrac{7}{3},\,\,c = \dfrac{2}{3}\).Vậy \(a + b + c = \dfrac{1}{3} + \dfrac{7}{3} + \dfrac{2}{3} = \dfrac{{10}}{3}\).Chọn D