Đáp án:
\(r = \sqrt 5 \)
Giải thích các bước giải:
\(\begin{array}{l}
\overrightarrow {AB} = ( - 4, - 8) \to AB = \sqrt {{{( - 4)}^2} + {{( - 8)}^2}} = 4\sqrt 5 \\
\overrightarrow {AC} = ( - 10, - 5) \to AC = \sqrt {{{( - 10)}^2} + {{( - 5)}^2}} = 5\sqrt 5 \\
\overrightarrow {BC} = ( - 6,3) \to BC = \sqrt {{{( - 6)}^2} + {3^2}} = 3\sqrt 5 \\
\overrightarrow {AB} .\overrightarrow {BC} = ( - 4).( - 6) + ( - 8).3 = 0\\
\to \overrightarrow {AB} \bot \overrightarrow {BC}
\end{array}\)
-> tam giác ABC vuông tại B
\(\begin{array}{l}
{p_{ABC}} = \frac{{AB + BC + AC}}{2} = \frac{{4\sqrt 5 + 3\sqrt 5 + 5\sqrt 5 }}{2} = 6\sqrt 5 \\
{S_{ABC}} = \frac{1}{2}.AB.BC = \frac{1}{2}.4\sqrt 5 .3\sqrt 5 = 30 = pr\\
\to r = \sqrt 5
\end{array}\)