Đáp án:
Ta có: `A(-2;3), B(1;-1)`
`=>` Độ dài đoạn `AB` là:
`| \vec{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}`
`= \sqrt{( 1+2)^2 + (-1-3)^2 }`
`= \sqrt{ 25}=5`
`=> chọn \ A`
_______________
Xét `f(x) = x² -3x -4=0`
`<=> x_1 = -1, x_2 = 4`
bảng xét dấu: $\begin{array} {|c|cc|} \hline x&-\infty&&-1&&4&&+\infty\\\hline f(x)&&+&0&-&0&+\\\hline\end{array}$
`=> f(x)≤0 <=> x \in [-1;4]`
Vậy `S=[-1;4]`