Trong mặt phẳng với hệ trục Oxy cho đường tròn (T) (x −1)2 +( y −1)2 =, đường thẳng (d): mx + y −3 = 0. Tìm m để trên (d) tồn tại duy nhất một điểm M sao cho từ M kẻ được hai tiếp tuyến MA và MB tới (T), (A, B là hai tiếp điểm) thỏa mãn góc giữa hai tiếp tuyến MA và MB bằng 600.
A.m = -1 và m=
B.m = và m=
C.m = 1 và m=
D.m =- và m=