Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có đường cao AA': 2x-y+1=0, trung tuyến BM: y+3=0, đường trung trực của AB là ∆: x+y+2=0. Tìm tọa độ trực tâm H của tam giác ABC. A.H(-1;-1) B.H(-1;1) C.H(1;-1) D.H(1;1)
Đáp án đúng: A Giải chi tiết:Vì A ∈ AA' => A(a;2a+1). Vì B ∈ BM => B(b;-3). Gọi N là trung điểm của AB, suy ra N(;a-1). Đường thẳng ∆ có VTCP là (1;-1). Ta có hệ phương trình ⇔ ⇔ Từ đó suy ra A(1;3),B(-5;-3). Đường thẳng BC có phương trình x+2y+11=0. Do đó C(-2c-11;c) Vì M ∈ BM => M(m;-3). Ta có M là trung điểm của AC nên => c=-9 => C(7;-9) Đường cao kẻ từ B có phương trình x-2y-1=0 Từ đó suy ra trực tâm H là nghiệm của hệ phương trình Do đó H(-1;-1).