Cho \(\int\limits_0^1 {f\left( x \right)dx} = 3\) và \(\int\limits_1^4 {f\left( x \right)dx} = 7,\) khi đó \(\int\limits_0^4 {f\left( x \right)dx} \) bằng:A.\(4\)B.\(21\)C.\(10\)D.\(-4\)
Chỉ ra nội dung sai: Trong tinh thể phân tử, các phân tử ... .A.tồn tại như những đơn vị độc lập.B.được sắp xếp một cách đều đặn trong không gian.C.nằm ở các nút mạng của tinh thể.D.liên kết với nhau bằng lực tương tác mạnh.
Tìm tập xác định \(D\) của hàm số \(y = {\left( {2 - x} \right)^{\frac{2}{3}}} + {\log _3}\left( {x + 2} \right).\)A.\(D = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\)B.\(D = \left( { - 2; + \infty } \right)\backslash \left\{ 2 \right\}\)C.\(D = \left( { - 2;\,\,2} \right]\) D.\(D = \left( { - 2;\,\,2} \right)\)
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A,\,\,AB = 2\sqrt 2 a\) và cạnh bên bằng \(6a.\) Thể tích lăng trụ đã cho là:A.\(8{a^3}\) B.\(24{a^3}\)C.\(16{a^3}\) D.\(48{a^3}\)
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):\,\,2x - 5z + 1 = 0.\) Một vecto pháp tuyến của mặt phẳng \(\left( P \right)\) là:A.\(\overrightarrow {{n_4}} = \left( {2; - 5;\,\,0} \right)\)B.\(\overrightarrow {{n_2}} = \left( {2; - 5;\,\,1} \right)\)C.\(\overrightarrow {{n_3}} = \left( {2;\,\,0; - 5} \right)\)D.\(\overrightarrow {{n_1}} = \left( {2;\,\,5;\,\,1} \right)\)
Trong các tinh thể sau đây: iot, băng phiến, kim cương, nước đá, silic. Số tinh thể nguyên tử và tinh thể phân tử lần lượt làA.2 và 3.B.3 và 2.C.1 và 4.D.4 và 1.
Cho hình nón có đường kính đường tròn đáy bằng \(2a,\) chiều cao bằng \(a.\) Khi đó thể tích khối nón bằng:A.\(\dfrac{{4\pi {a^3}}}{3}\) B.\(4\pi {a^3}\)C.\(\pi {a^3}\) D.\(\dfrac{{\pi {a^3}}}{3}\)
Chỉ ra nội dung không đúng khi nói về đặc trưng của tinh thể phân tử.A.Kém bền vững.B.Nhiệt độ nóng chảy khá thấp.C.Rất cứng.D.Có nhiệt độ sôi thấp hơn nhiệt độ sôi của những chất có mạng tinh thể nguyên tử.
Cho \({\log _a}b = 4\) và \({\log _a}c = 5.\) Tính \(P = {\log _a}\left( {b{c^2}} \right).\)A.\(P = 18\)B.\(P = 14\)C.\(P = 40\)D.\(P = 100\)
Cho hàm số \(f\left( x \right)\) là hàm số chẵn và liên tục trên \(\left[ { - 1;1} \right]\) thỏa mãn: \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = \dfrac{{86}}{{15}}\) và \(f\left( 1 \right) = 5\). Khi đó \(\int\limits_0^1 {xf'\left( x \right)dx} \) bằng:A.\(\dfrac{{32}}{{15}}\)B.\(\dfrac{{86}}{{15}}\)C.\(\dfrac{{ - 11}}{{15}}\)D.\(\dfrac{{16}}{{15}}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến