Gọi $x$(cm) là độ dài cạnh hình vuông bị cắt bỏ. Khi đó, các kích thước của hình hộp như sau:
- Chiều dài: $60 - 2x$(cm)
- Chiều rộng: $40 - 2x$(cm)
- Chiều cao: $x$(cm)
Khi đó, thể tích hình hộp là
$(60-2x)(40-2x).x = 4x^3 - 200x^2 + 2400x$
Xét hso
$y = 4x^3 - 200x^2 + 2400x$
Ta có
$y' = 12x^2 - 400x + 2400$
Xét ptrinh
$y' = 0$
$\Leftrightarrow 12x^2 - 400x + 2400 = 0$
$\Leftrightarrow 3x^2 - 100x + 600 = 0$
$\Leftrightarrow x = \dfrac{50 \pm 10\sqrt{7}}{3}$
Do đó điểm cực đại là $x = \dfrac{50 - 10\sqrt{7}}{3}\approx 7,847 \approx 7,85$(cm)
Đáp án A.